Diagrammatic presentations of enriched monads and the axiomatics of enriched algebra

Jason Parker (joint work with Rory Lucyshyn-Wright)

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Quick summary

Given a suitable **subcategory of arities** $\mathcal{J} \hookrightarrow \mathcal{C}$ in a suitable \mathcal{V} -category \mathcal{C} enriched in a suitable symmetric monoidal closed category \mathcal{V} , we establish flexible and user-friendly methods for presenting **enriched** \mathcal{J} -algebraic **structure** in a wide variety of (new) mathematical contexts, and we establish that the applicability of such methods is equivalent to the axiom of **strong amenability** introduced in [LWP23b] and discussed in Rory Lucyshyn-Wright's talk. This work generalizes and extends previous work in [KP93, BG19, LWP22b, LWP23a].

Strongly amenable subcategories of arities

- Fix a complete and cocomplete symmetric monoidal closed category V, a complete and cocomplete V-category C, and a small subcategory of arities J → C, i.e. a small dense full sub-V-category.
- A \mathcal{J} -pretheory is a \mathcal{V} -category \mathcal{T} equipped with an identity-on-objects \mathcal{V} -functor $\tau : \mathcal{J}^{op} \to \mathcal{T}$. There is a \mathcal{V} -category \mathcal{T} -Alg of \mathcal{T} -algebras equipped with a forgetful \mathcal{V} -functor $U^{\mathcal{T}} : \mathcal{T}$ -Alg $\to \mathcal{C}$.
- The subcategory of arities *J* → *C* is strongly amenable [LWP23b] if *U^T* : *T*-Alg → *C* has a left adjoint for every *J*-pretheory *T* (briefly: if every *J*-pretheory has free algebras). This will be discussed further in Rory Lucyshyp Wright's talk

Free-form \mathcal{J} -signatures and diagrammatic \mathcal{J} -presentations [LWP23a]

- A parametrized $(\mathcal{J}\text{-})$ operation on an object A of \mathcal{C} is a morphism $\omega : \mathcal{C}(J, A) \to \mathcal{C}(\mathcal{C}, A)$ in \mathcal{V} for objects $J \in \text{ob } \mathcal{J}$ (the arity) and $\mathcal{C} \in \text{ob } \mathcal{C}$ (the parameter). Equivalently, we can write $\omega : \mathcal{C}(J, A) \otimes \mathcal{C} \to A$ in \mathcal{C} , because \mathcal{C} is tensored.
- A free-form \mathcal{J} -signature is a set \mathcal{S} (of operation symbols) equipped with objects $J_{\sigma} \in \text{ob } \mathcal{J}$, $C_{\sigma} \in \text{ob } \mathcal{C}$ ($\sigma \in \mathcal{S}$). An \mathcal{S} -algebra is an object A of \mathcal{C} equipped with parametrized operations $\sigma^{A} : \mathcal{C}(J_{\sigma}, A) \to \mathcal{C}(C_{\sigma}, A)$ ($\sigma \in \mathcal{S}$). There is a \mathcal{V} -category \mathcal{S} -Alg of \mathcal{S} -algebras equipped with a forgetful \mathcal{V} -functor $U^{\mathcal{S}} : \mathcal{S}$ -Alg $\to \mathcal{C}$.
- A diagrammatic S-equation $\omega \doteq \nu$ is a pair of \mathcal{V} -natural transformations $\omega, \nu : \mathcal{C}(J, U^S -) \Longrightarrow \mathcal{C}(C, U^S -) : S$ -Alg $\rightarrow \mathcal{V}$ with $J \in \text{ob } \mathcal{J}$ and $C \in \text{ob } \mathcal{C}$. An S-algebra A satisfies a diagrammatic S-equation $\omega \doteq \nu$ if $\omega_A = \nu_A : \mathcal{C}(J, A) \rightarrow \mathcal{C}(C, A)$.
- A diagrammatic \mathcal{J} -presentation is a pair $\mathcal{P} = (\mathcal{S}, \mathcal{E})$ consisting of a free-form \mathcal{J} -signature \mathcal{S} and a small family \mathcal{E} of diagrammatic \mathcal{S} -equations. A \mathcal{P} -algebra is an \mathcal{S} -algebra that satisfies the diagrammatic \mathcal{S} -equations in \mathcal{E} . We write \mathcal{P} -Alg $\hookrightarrow \mathcal{S}$ -Alg for the full sub- \mathcal{V} -category consisting of the \mathcal{P} -algebras, and $U^{\mathcal{P}} : \mathcal{P}$ -Alg $\to \mathcal{C}$ for the restricted forgetful \mathcal{V} -functor, so that we may regard \mathcal{P} -Alg as an object of the slice category \mathcal{V} -CAT/ \mathcal{C} .
- A diagrammatic *J*-presentation *P* presents a *V*-monad (on *C*) if there is a *V*-monad *T*_P on *C* (necessarily unique up to isomorphism) such that *P*-Alg ≅ *T*_P-Alg in *V*-CAT/*C*. A *J*-ary variety is an object of *V*-CAT/*C* of the form *P*-Alg for some diagrammatic *J*-presentation *P*.

The main result

Theorem: The small subcategory of arities $\mathcal{J} \hookrightarrow \mathcal{C}$ is strongly amenable if and only if every diagrammatic \mathcal{J} -presentation presents a \mathcal{V} -monad on \mathcal{C} .

This theorem establishes that strongly amenable subcategories of arities enable flexible and user-friendly methods for presenting enriched algebraic structure, and that the axiom of strong amenability is *equivalent* to the requirement that every diagrammatic presentation present a V-monad on C.
 In this situation, the V-monads on C that have diagrammatic J-presentations are precisely the J-nervous V-monads of [LWP23b], and the category Mnd_J(C) of

 \mathcal{J} -nervous \mathcal{V} -monads on \mathcal{C} is monadic over the category $\operatorname{Sig}_{\mathcal{J}}(\mathcal{C})$ of \mathcal{J} -signatures, and is dually equivalent to the category $\operatorname{Var}_{\mathcal{J}}(\mathcal{C})$ of \mathcal{J} -ary varieties.

Examples of strongly amenable subcategories of arities

- Every accessible subcategory of arities *J* → *C* (i.e. there is a regular cardinal α such that each *C*(*J*, −) : *C* → *V* (*J* ∈ ob *J*) preserves small conical α-filtered colimits).
- Every small subcategory of arities *J* → *C* in a *V*-sketchable *V*-category *C* (i.e. *C* ≃ Φ-Cts(*T*, *V*) for a class of small weights Φ and a small Φ-theory *T*) enriched in a locally bounded closed category *V*. In particular, every small full sub-*V*-category *J* → *V* that contains the unit object *I* in a locally bounded closed category *V* (e.g. any topological category over **Set**), and every small subcategory of arities in a locally presentable *V*-category *C* enriched in a locally presentable closed category *V* [BG19].

Some examples of \mathcal{J} -ary varieties

- With C = V cartesian closed and $\mathcal{J} = \{n \cdot I \mid n \in \mathbb{N}\} \hookrightarrow \mathcal{V}$: internal *R*-modules in \mathcal{V} for an internal rig *R* in \mathcal{V} .
- With C = V = Cat and $\mathcal{J} = \{n \cdot 1 \mid n \in \mathbb{N}\} \hookrightarrow Cat$: small monoidal categories.
- With V locally bounded and C = Grph(V) (internal graphs in V): internal categories in V.
- With V cartesian closed and locally bounded and J → V any small system of arities: the (enriched) global state algebras of [PP02].
- With V cartesian closed and J = {n · 1 | n ∈ N} → V: algebras for Staton's parametrized theory of instantiating and reading bits [Sta13].
- With C = V = CGTop and J = {n · 1 | n ∈ N} → CGTop:
 H-spaces, i.e. internal 'monoids' in CGTop whose multiplication is only associative and unital up to specified homotopies.

[BG19] John Bourke and Richard Garner, *Monads and theories*, Adv. Math. **351** (2019), 1024–1071.

- [Kel05] G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005), Reprint of the 1982 original [Cambridge Univ. Press, Cambridge].
- [KP93] G. M. Kelly and A. J. Power, Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads, J. Pure Appl. Algebra 89 (1993).
- [LWP22a] Rory B. B. Lucyshyn-Wright and Jason Parker, Locally bounded enriched categories, Theory Appl. Categ. 38 (2022), No. 18, 684–736.
- [LWP22b] _____, Presentations and algebraic colimits of enriched monads for a subcategory of arities, Theory Appl. Categ. 38 (2022), No. 38, 1434–1484.
- [LWP23a] _____, Diagrammatic presentations of enriched monads and varieties for a subcategory of arities, To appear in Applied Categorical Structures, 2023.
- [LWP23b] _____, Enriched structure-semantics adjunctions and monad-theory equivalences for subcategories of arities, Preprint, arXiv:2305.07076, 2023.
- [PP02] Gordon Plotkin and John Power, Notions of computation determine monads, Lecture Notes in Comput. Sci., vol. 2303, 2002, pp. 342–356.
- [Sta13] Sam Staton, Instances of computational effects: an algebraic perspective, LICS 2013, pp. 519–528.