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Introduction

My first postdoc was from September 2020–August 2023 at Brandon
University in Brandon, Manitoba (even colder than Calgary), where I
worked with Rory Lucyshyn-Wright. We mainly worked on enriched
algebraic theories, enriched monads, and enriched varieties.

Rory:
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Introduction

I will first give a historical overview of the topic, and then describe
the new contributions that Rory and I made.

I will conclude by mentioning some of my recent, current, and future
research on this topic.
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The trinity of categorical algebra

Lawvere Theories Monads

Equational Theories
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Back to the beginning: Birkhoff, Lawvere, Linton

Birkhoff [Bir35] originated the study of universal algebra in the
1930s, which was then given a categorical formulation by Lawvere
[Law63] and Linton [Lin66] in the 1960s. Birkhoff defined a general
notion of (equational) variety of algebras, which is a class of
algebraic structures axiomatized by equations. E.g. the varieties of
monoids, groups, commutative rings with unit, lattices, and many
more.

A (finitary) signature is a set Σ of operation symbols equipped
with the assignment to each operation symbol σ ∈ Σ of an arity
n ≥ 0. A Σ-algebra A is a set A equipped with a function
σA : An → A for each σ ∈ Σ of arity n ≥ 0.

A morphism of Σ-algebras f : A→ B is a function f : A→ B such
that f ◦σA = σB ◦ f n : An → B for each σ ∈ Σ. We have the category
Σ-Alg of Σ-algebras and a forgetful functor UΣ : Σ-Alg→ Set.
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Equational theories I

Given a context of variables ~v ≡ v1, . . . , vn, one can recursively define
the set Term(Σ; ~v) of Σ-terms in context ~v as follows: each vi
(1 ≤ i ≤ n) is a Σ-term in context ~v ; and if σ ∈ Σ has arity m ≥ 0
and t1, . . . , tm are Σ-terms in context ~v , then σ(t1, . . . , tm) is a
Σ-term in context ~v .

Given a Σ-algebra A, each Σ-term t in context ~v induces an
interpretation function tA : An → A.

A (syntactic) Σ-equation in context ~v is an expression of the form
s
.

= t for Σ-terms s, t in context ~v . A Σ-algebra A satisfies s
.

= t if
sA = tA : An → A.
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Equational theories II

An equational theory is a pair T = (Σ, E) consisting of a signature
Σ and a set E of syntactic Σ-equations in context. A T -algebra is a
Σ-algebra that satisfies each equation in E . We have the full
subcategory T -Alg ↪→ Σ-Alg and a forgetful functor
UT : T -Alg→ Set, so that T -Alg can be regarded as an object of
the slice category CAT/Set.
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Varieties and finitary monads

A variety is an object of CAT/Set of the form T -Alg for some
equational theory T . Examples include the varieties of sets, monoids,
groups, commutative rings with unit, lattices, and many more.

For each equational theory T , the forgetful functor
UT : T -Alg→ Set has a left adjoint F T : Set→ T -Alg, and the
resulting monad on Set is finitary, meaning that UT F T : Set→ Set
preserves filtered colimits. Conversely, for every finitary monad T on
Set, there is an equational theory T such that T-Alg ∼= T -Alg in
CAT/Set. This correspondence extends to a dual equivalence

Var 'Mndf (Set)op.
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Lawvere theories I

Lawvere [Law63] discovered a purely categorical formulation of
varieties in terms of Lawvere theories. A Lawvere theory is a
category T with finite products equipped with an identity-on-objects
functor τ : FinCardop → T that preserves finite products. A
T -algebra is a functor A : T → Set that preserves finite products,
and a morphism of T -algebras is a natural transformation. We have
a category T -Alg and a forgetful functor UT : T -Alg→ Set given
by A 7→ A(1).

The functor UT has a left adjoint, and the resulting monad on Set is
finitary. Conversely, given a finitary monad T on Set, the full
subcategory T of T-Alg consisting of the free T-algebras on finite
cardinals is a Lawvere theory with T-Alg ∼= T -Alg in CAT/Set. This
correspondence extends to an equivalence

Mndf (Set) ' Law.
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Lawvere theories II

All told, in the classical setting of finitary universal algebra, we have
the following (dual) equivalences between Lawvere theories, finitary
monads on Set, and varieties, due to Birkhoff [Bir35], Lawvere
[Law63] and Linton [Lin66]:

Law 'Mndf (Set) ' Varop.
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Various settings for enriched algebra I

After Lawvere and Linton, various researchers generalized the notions
of Lawvere theory and finitary monad to the enriched setting,
including:

I [BD80] Francis Borceux and Brian Day, Universal algebra in a closed
category, 1980.

I [Pow99] John Power, Enriched Lawvere theories, 1999.

I [NP09] Koki Nishizawa and John Power, Lawvere theories enriched
over a general base, 2009.

I [LR11] Stephen Lack and Jǐŕı Rosický, Notions of Lawvere theory, 2011.

I [LW16] Rory B. B. Lucyshyn-Wright, Enriched algebraic theories and
monads for a system of arities, 2016.

I [BG19] John Bourke and Richard Garner, Monads and theories, 2019.
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Various settings for enriched algebra II

However, virtually none of these frameworks developed a
corresponding notion of enriched variety, and most of them were
formulated in the locally presentable setting, which excludes many
important (topological) categories in mathematics. Also, there was no
framework for enriched algebra that captured all of these prior
frameworks under one roof.

So Rory and I set out to rectify all of these issues, which we did in the
following papers and preprints:

I [LWP22] Presentations and algebraic colimits of enriched monads for a
subcategory of arities, TAC, 2022.

I [LWP23a] Diagrammatic presentations of enriched monads and
varieties for a subcategory of arities, ACS, 2023.

I [LWP23b] Enriched structure-semantics adjunctions and monad-theory
equivalences for subcategories of arities, Preprint, 2023.

I [LWP23c] Diagrammatic presentations of enriched monads and the
axiomatics of enriched algebra, In preparation, 2023.
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Moving towards the enriched setting...

We can refer to the full subcategory j : FinCard ↪→ Set as a
subcategory of arities (because it is dense). A contravariant
functor FinCardop → Set is a j-nerve if it is of the form Set(j−,X )
for some set X .

A Lawvere theory can then be equivalently defined as a category T
equipped with an identity-on-objects functor τ : FinCardop → T
such that for each n ∈ N, the functor T (n, τ−) : FinCardop → Set is
a j-nerve.

A T -algebra can also be equivalently defined as a functor
A : T → Set such that A ◦ τ : FinCardop → Set is a j-nerve.
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Subcategories of arities

Let V be a complete and cocomplete symmetric monoidal closed
category (a cosmos), and let C be a complete and cocomplete
V -category. A subcategory of arities is a dense full sub-V -category
j : J ↪→ C .

E.g. with V = Set and C = Set, we have the subcategory of arities
j : FinCard ↪→ Set.

Jason Parker (joint with Rory Lucyshyn-Wright) Enriched algebraic theories, monads, and varieties



J -theories

A j-nerve is a V -functor J op → V of the form C (j−,C ) for some
object C of C .

A J -theory is a V -category T equipped with an identity-on-objects
V -functor τ : J op → T such that for each J ∈ obJ , the
V -functor T (J, τ−) : J op → V is a j-nerve.

A T -algebra is a V -functor A : T → V such that A ◦ τ : J op → V
is a j-nerve. There is a V -category T -Alg and a forgetful V -functor
UT : T -Alg→ C . With V = Set and C = Set and
J = FinCard ↪→ Set, we recover Lawvere theories and their
(categories of) algebras.
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The enriched monad–theory equivalence I

A V -monad T on C is J -ary (or J -nervous) if it satisfies some
technical conditions [LWP23b]. With V = Set and C = Set and
J = FinCard ↪→ Set, we recover finitary monads on Set.

Theorem ([LWP23b])

Suppose that the subcategory of arities J ↪→ C is amenable. Then
there is an equivalence

ThJ (C ) 'MndJ (C )

between the category of J -theories and the category of J -ary
V -monads on C , which respects semantics in an appropriate sense.

With V = Set and C = Set and J = FinCard ↪→ Set, we recover
the classical equivalence between Lawvere theories and finitary
monads on Set.
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The enriched monad–theory equivalence II

Moreover, this Theorem recovers the enriched monad–theory
equivalences established in all of the aforementioned papers (and
more): [BD80], [Pow99], [NP09], [LR11], [LW16], [BG19]. So we
have united all of these frameworks under one roof!

Examples of amenable subcategories of arities J ↪→ C include:

I Any eleutheric subcategory of arities J ↪→ C (e.g. FinCard ↪→ Set;
Cα ↪→ C for a locally α-presentable V -category C ; FinCard ↪→ V for
a complete and cocomplete cartesian closed V ).

I Any small subcategory of arities J ↪→ C in a V -sketchable
V -category C enriched over a locally bounded V . In particular, any
small subcategory of arities in a locally bounded V , e.g. in any
topological category over Set.
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The enriched monad–theory equivalence III

The second class of examples is completely new: none of the
aforementioned papers [BD80], [Pow99], [NP09], [LR11], [LW16],
[BG19] had managed to incorporate topological bases of enrichment
in any significant way, because they almost always used locally
presentable bases of enrichment.
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What about enriched varieties? I

With V = Set and C = Set and J = FinCard ↪→ Set, there is an
established notion of variety. None of the prior papers developed an
enriched notion of variety, so Rory and I did that in
[LWP22, LWP23a, LWP23c].

Well, actually, the following papers went partway towards defining
enriched notions of variety in certain restricted settings:

I [KP93] G. M. Kelly and A. J. Power, Adjunctions whose counits are
coequalizers, and presentations of finitary enriched monads, 1993.

I [KL93] G. M. Kelly and Stephen Lack, Finite-product-preserving
functors, Kan extensions and strongly-finitary 2-monads, 1993.

But their notions were quite far from the classical notions, and not as
concrete and user-friendly as the ones that we ultimately developed.
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What about enriched varieties? II

To motivate this enriched notion of variety, let’s start by
reformulating the classical notion of variety in a way that will more
readily admit generalization to the enriched setting.

First, note that a signature Σ can be equivalently formulated as a
family of sets (Σn)n∈FinCard. A Σ-algebra A can then be
(re)formulated as a set A equipped with, for each n ∈ N, an
interpretation function

iAn : Σ(n)→ Set (An,A) = Set (Set(n,A),A) .
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What about enriched varieties? III

Now let’s look at Σ-terms. It is a classical fact/result that the
Σ-terms t in context ~v ≡ v1, . . . , vn correspond bijectively to
algebraic Σ-operations of arity n, i.e. natural transformations

ωt : Set
(
n,UΣ−

)
=⇒ UΣ : Σ-Alg→ Set,

in such a way that

tA = ωt
A : An = Set (n,A)→ A

for each Σ-algebra A.

A syntactic Σ-equation s
.

= t in context ~v can then be equivalently
formulated as an algebraic Σ-equation of arity n, i.e. a pair
ωs .

= ωt of algebraic Σ-operations of arity n. A Σ-algebra A satisfies
s
.

= t iff ωs
A = ωt

A : An → A.

Jason Parker (joint with Rory Lucyshyn-Wright) Enriched algebraic theories, monads, and varieties



What about enriched varieties? IV

In summary: an equational theory can be equivalently formulated as a
pair T = (Σ, E) consisting of a FinCard-indexed family of sets
Σ = (Σn)n∈FinCard and a set E of algebraic Σ-equations.

This will be our basis for defining notions of enriched equational
theory and enriched variety.

Jason Parker (joint with Rory Lucyshyn-Wright) Enriched algebraic theories, monads, and varieties



Equational J -theories and J -ary varieties I

A J -signature is an obJ -indexed family Σ = (ΣJ)J∈obJ of
objects of C .

A Σ-algebra is an object A of C equipped with, for each J ∈ obJ ,
an interpretation C -morphism

iAJ : ΣJ → [C (J,A),A] .

We have a V -category Σ-Alg of Σ-algebras and a forgetful V -functor
UΣ : Σ-Alg→ C .

An algebraic Σ-operation is a V -natural transformation

ω : C
(
J,UΣ−

)
⊗ P =⇒ UΣ : Σ-Alg→ C

for a specified arity J ∈ obJ and parameter (object) P ∈ obC .
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Equational J -theories and J -ary varieties II

An algebraic Σ-equation is a pair ω
.

= ν of algebraic Σ-operations
with the same arity and parameter. A Σ-algebra A satisfies ω

.
= ν

when ωA = νA : C (J,A)⊗ P → A.

An equational J -theory is a pair T = (Σ, E) consisting of a
J -signature Σ and a set E of algebraic Σ-equations. A T -algebra is
a Σ-algebra that satisfies each algebraic Σ-equation in E . We have
the full sub-V -category T -Alg ↪→ Σ-Alg and a forgetful V -functor
UT : T -Alg→ C , so that T -Alg may be regarded as an object of the
slice category V -CAT/C .

A J -ary variety is an object of V -CAT/C of the form T -Alg for
some equational J -theory T . We write VarJ (C ) for the category of
J -ary varieties (a full subcategory of V -CAT/C ).
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Equational J -theories and J -ary varieties III

Theorem ([LWP23c])

Suppose that the subcategory of arities J ↪→ C is strongly amenable.
Then the category VarJ (C ) of J -ary varieties is dually equivalent to the
categories ThJ (C ) of J -theories and MndJ (C ) of J -ary V -monads on
C :

VarJ (C )op ' ThJ (C ) 'MndJ (C ).

These (dual) equivalences respect semantics. In particular, every
equational J -theory presents a J -theory and a J -ary V -monad on C ,
while every J -theory and every J -ary V -monad is presented by an
equational J -theory.

With V = Set and C = Set and J = FinCard ↪→ Set, we recover the
classical (dual) equivalences between varieties, Lawvere theories, and
finitary monads on Set.
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Examples of J -ary varieties I

With C = V cartesian closed and J = FinCard ↪→ V : the
V -category of internal R-modules for an internal ri(n)g R in V .

With V = Set and C = Grph and J = Grphfp ↪→ Grph: the
category Cat of small categories.

With C = V = Cat and J = FinCard ↪→ Cat: the 2-category of
small monoidal categories and strict monoidal functors.

With V locally bounded and C = Grph(V ) (internal graphs in V ):
the V -category of internal categories in V .
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Examples of J -ary varieties II

With C = V = CGTop and J = FinCard ↪→ CGTop: the
CGTop-category of H-monoids, i.e. internal ‘monoids’ in CGTop
whose multiplication is only associative and unital up to specified
homotopies.

The ordered equational theories of Adámek–Dostál–Velebil
[ADV22], with V = Pos and C = Pos and J = FinCard ↪→ Pos.

The quantitative equational theories of
Mardare–Panangaden–Plotkin [MPP16], with V = Met and
C = Met and J = FinCard ↪→Met.
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Examples of J -ary varieties III

The relational algebraic theories of Ford–Milius–Schröder [FMS21],
with V = T-Mod and C = T-Mod for a relational Horn theory T
and J = T-Modfp ↪→ T-Mod.

The continuous varieties of Adámek–Dostál–Velebil [ADV23], with
V = ω-CPO/DCPO and C = ω-CPO/DCPO and
J = FinCard ↪→ ω-CPO/DCPO.
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Current and future research I

I have recently been focusing on specific settings where equational
J -theories and J -ary varieties have an even more concrete and
syntactic formulation. In particular, I have recently worked in the
setting where V is topological over Set:

I [Par23] Jason Parker, Free algebras of topologically enriched
multi-sorted equational theories, Preprint, 2023.

Currently I am working in the setting where V = T-Mod for a
relational Horn theory T, where equational J -theories have an even
more concrete formulation than in [Par23]. Examples of such V
include Pos,Met,Simp,ProbMet,Q-Cat for a commutative unital
quantale Q, and many more.
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Current and future research II

In these settings, I have been focusing on the case of multi-sorted
equational J -theories and J -ary varieties, where one takes C = V S

and J = FinCardS ↪→ V S for a set of sorts S.

Classical multi-sorted equational theories (with V = Set) have had
many applications in algebraic specification, algebraic datatypes, and
the (categorical) theory of databases, so I am hoping that enriched
multi-sorted equational theories may have similar applications!

I will talk about these further topics (and others) at future seminars!
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Thank you!
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monads and continuous algebras, Preprint, arXiv:2301.05730,
2023.

[BD80] Francis Borceux and Brian Day, Universal algebra in a closed
category, J. Pure Appl. Algebra 16 (1980), no. 2, 133–147.

[BG19] John Bourke and Richard Garner, Monads and theories, Adv.
Math. 351 (2019), 1024–1071.

[Bir35] Garrett Birkhoff, On the structure of abstract algebras, Proc.
Camb. Phil. Soc 31 (1935), no. 31, 433–454.

Jason Parker (joint with Rory Lucyshyn-Wright) Enriched algebraic theories, monads, and varieties



References II

[FMS21] Chase Ford, Stefan Milius, and Lutz Schröder, Monads on
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