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Introduction

Classical multi-sorted algebraic (or equational) theories and their
initial (or free) algebras have been fundamental in mathematics and
computer science: e.g. in studying algebraic specification [Mit96],
computational effects [PP04], and algebraic databases and data
integration [SSVW17, SW17].

Classical multi-sorted equational theories are Set-enriched: their
algebras are multi-sorted sets equipped with finitary operations that
must satisfy certain equations. There is a well-known explicit and
constructive description of their free algebras, in terms of term
algebras.
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Introduction

In this talk, given a symmetric monoidal category V that is
topological over Set, I will define a notion of V -enriched
multi-sorted equational theory: the algebras will be multi-sorted
objects of V equipped with V -parameterized finitary operations
that must satisfy certain equations.

Every V -enriched multi-sorted equational theory T has an underlying
classical multi-sorted equational theory |T |, and (because V is
topological over Set) free T -algebras can be explicitly described as
suitable “liftings” of free |T |-algebras. I will provide some examples of
V -enriched multi-sorted equational theories, and explain their
connection to V -enriched algebraic theories and monads for a
subcategory of arities (when V is symmetric monoidal closed).
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Review of classical multi-sorted equational theories

Fix a set S of sorts. A (classical) S-sorted signature is a set of
operation symbols Σ equipped with an assignment to each σ ∈ Σ of a
finite tuple (S1, . . . ,Sn) of input sorts and an output sort S :

σ : S1 × . . .× Sn → S .

Given a context ~v ≡ v1 : T1, . . . , vm : Tm of S-sorted variables, for
each sort S ∈ S we can define the set Term (Σ; ~v)S of Σ-terms
[~v ` t : S ] of sort S in context ~v in a standard way.
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Review of classical multi-sorted equational theories

A Σ-equation in context [~v ` s
.

= t : S ] consists of a context ~v and
two Σ-terms s, t of the same sort S in context ~v . A (classical)
S-sorted equational theory is a pair T = (Σ, E) consisting of a
classical S-sorted signature Σ and a set E of Σ-equations in context.

A Σ-algebra A is an S-sorted carrier set A = (AS)S∈S (i.e. an

object of SetS) equipped with, for each σ ∈ Σ, a function

σA : AS1 × . . .× ASn → AS .

Given a context ~v ≡ v1 : T1, . . . , vm : Tm, each Σ-term [~v ` t : S ] of
sort S in context ~v induces an interpretation function

[~v ` t : S ]A : AT1 × . . .× ATm → AS .
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Review of classical multi-sorted equational theories

A Σ-algebra A satisfies a Σ-equation in context [~v ` s
.

= t : S ] if
[~v ` s : S ]A = [~v ` t : S ]A. Given a classical S-sorted equational
theory T = (Σ, E), a T -algebra is a Σ-algebra that satisfies each
Σ-equation in E .

We obtain a category Σ-Alg of Σ-algebras and their morphisms and a
forgetful functor UΣ : Σ-Alg→ SetS . Given T = (Σ, E), we have the
full subcategory T -Alg ↪→ Σ-Alg and the restricted forgetful functor
UT : T -Alg→ SetS .
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Free algebras of classical multi-sorted equational theories

Given a classical S-sorted equational theory T = (Σ, E), the forgetful
functor UT : T -Alg→ SetS has a left adjoint F T : SetS → T -Alg
with the following well-known explicit, constructive description.

First, we have the following description of the left adjoint
FΣ : SetS → Σ-Alg of UΣ : Σ-Alg→ SetS . Given an S-sorted set
X = (XS)S∈S , one considers the classical S-sorted signature ΣX

obtained from Σ by adjoining, for each sort S ∈ S and each x ∈ XS ,
a new constant symbol cx : S . The S-sorted set Term (ΣX ;∅) of
ground ΣX -terms carries the structure of the free Σ-algebra FΣX on
X , with σF

ΣX given by (t1, . . . , tn) 7→ σ(t1, . . . , tn) for each σ ∈ Σ.

To construct the free T -algebra F T X on X , one considers the
smallest Σ-congruence ∼E on FΣX generated by E . The quotient
Σ-algebra FΣX

/
∼E is then the free T -algebra on X .
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Enrichment of classical multi-sorted equational theories

To develop an enriched notion of multi-sorted equational theory for
which free algebras can (still) be explicitly and constructively
described using an augmented term algebra construction, we consider
a symmetric monoidal category V = (V ,⊗, I ) such that the
representable functor | − | := V (I ,−) : V → Set is strict monoidal
and topological. Omitting the full definition, the functor | − | is
faithful and a very strong kind of bifibration.

Examples (other than Set) include:
I Various categories of topological and measurable spaces.
I The categories of models of relational Horn theories without

equality, including the categories of preordered sets and (extended)
pseudo-metric spaces.

I The categories of quasispaces (a.k.a. concrete sheaves) on concrete
sites [BH11, Dub79, MMS22], including diffeological spaces,
quasi-Borel spaces [HKSY17], bornological sets, (abstract) simplicial
complexes, pseudotopological spaces, and convergence spaces.

I Many of the categories studied in monoidal topology [HST14].
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V -enriched multi-sorted signatures

Fix a set S of sorts. A V -enriched S-sorted signature is a set of
operation symbols Σ equipped with an assignment to each σ ∈ Σ of a
finite tuple (S1, . . . ,Sn) of input sorts, an output sort S , and a
parameter object P ∈ ob(V ); we say that σ has type
((S1, . . . ,Sn),S ,P).

A Σ-algebra A is an S-sorted carrier object A = (AS)S∈S of V ,
i.e. an object of V S , equipped with, for each σ ∈ Σ as above, a
V -morphism

σA : P ⊗ (AS1 × . . .× ASn)→ AS .

We obtain a category Σ-Alg of Σ-algebras and their morphisms, and
a forgetful functor UΣ : Σ-Alg→ V S .
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V -enriched multi-sorted equational theories

Every V -enriched S-sorted signature Σ has an underlying classical
S-sorted signature |Σ|. For each σ ∈ Σ of type

(
S , S ,P

)
and each

p ∈ |P|, |Σ| has an operation symbol σp with input sorts S and
output sort S . We can then consider |Σ|-equations in context.
Moreover, every Σ-algebra A has an underlying |Σ|-algebra |A|Σ, and
we obtain a functor | − |Σ : Σ-Alg→ |Σ|-Alg.

A V -enriched S-sorted equational theory is a pair T = (Σ, E)
consisting of a V -enriched S-sorted signature Σ and a set E of
|Σ|-equations in context, so that |T | := (|Σ|, E) is a classical S-sorted
equational theory. A T -algebra is a Σ-algebra A whose underlying
|Σ|-algebra |A|Σ is a |T |-algebra (i.e. satisfies every |Σ|-equation in
E). We have the full subcategory T -Alg ↪→ Σ-Alg and the restricted
forgetful functor UT : T -Alg→ V S .
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Examples of V -enriched multi-sorted equational theories

Every classical multi-sorted equational theory T determines a
V -enriched multi-sorted equational theory T ∗ for which a T ∗-algebra
can be described as a T -algebra in V . For example:

I There are V -enriched single-sorted equational theories whose algebras
are internal semigroups/monoids/groups in V , commutative ring
objects in V , . . .

I When (V ,⊗, I ) is cartesian, there is a V -enriched N-sorted equational
theory whose algebras are (symmetric) V -based operads.

I When (V ,⊗, I ) is cartesian, for each fixed set O there is a V -enriched
(O ×O)-sorted equational theory whose algebras are V -categories
with object set O.

I For each small category A , there is a V -enriched ob (A )-sorted
equational theory whose algebras are functors A → V .
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Examples of V -enriched multi-sorted equational theories

Let V = Top. There is a Top-enriched single-sorted equational
theory for which an algebra may be described as a (strict/coherent)
H-space, i.e. an internal ‘monoid’ in Top whose product is only
associative and unital up to specified homotopies. More generally,
given any classical S-sorted equational theory T , there is a
Top-enriched S-sorted equational theory Th (the homotopy
weakening of T ) whose algebras may be described as the
‘T -algebras’ in Top that only satisfy the equations of T up to
specified homotopies.

Suppose that V is symmetric monoidal closed, and let A be a small
V -category. There is a V -enriched ob (A )-sorted equational theory
whose algebras are V -functors A → V .

Given a relational Horn theory T without equality, a certain subclass
of the relational algebraic theories of [FMS21] (which generalize
the quantitative algebraic theories of [MPP16]) can be described
as T-Mod-enriched single-sorted equational theories.
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Free algebras of V -enriched multi-sorted equational
theories
Given a V -enriched S-sorted equational theory T = (Σ, E) and its
underlying classical S-sorted equational theory |T | = (|Σ|, E), the functor
| − |Σ : Σ-Alg→ |Σ|-Alg restricts to a functor | − |T : T -Alg→ |T |-Alg.

Theorem ([Par23])

The forgetful functor UT : T -Alg→ V S has a left adjoint
F T : V S → T -Alg, and the resulting adjunction F T a UT : T -Alg→ V S

is a (strict) lifting of the adjunction F |T | a U |T | : |T |-Alg→ SetS . In
particular, the following diagram strictly commutes:

V S T -Alg

SetS |T |-Alg.

FT

|−|T|−|

F |T |
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Free algebras of V -enriched multi-sorted equational
theories

Thus, for each object X = (XS)S∈S of V S , the free T -algebra F T X

on X lies over the free |T |-algebra F |T ||X | on the underlying S-sorted
set |X | = (|XS |)S∈S in SetS . The free T -algebra F T X is completely
determined by its carrier object UT F T X of V S , which equips the
carrier object U |T |F |T ||X | of SetS with an appropriate V -structure
(e.g. an appropriate topology).

Using the above Theorem, we can provide an explicit description of
this V -structure, and hence of the free T -algebra F T X on X . When
V is cartesian closed, this explicit description becomes even more
constructive and inductive. (See upcoming preprint for details!)

When T is single-sorted (and each parameter object is trivial), we
recover previously established descriptions of free T -algebras for
certain specific V , including those in [Por88, Por91, Bat10].
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The connection with V -enriched algebraic theories and
monads

Given an arbitrary symmetric monoidal closed category V and a
subcategory of arities J ↪→ C in a V -category C , there is an
established theory of enriched algebraic J -theories and
J -ary/J -nervous V -monads on C : see
[LW16, LWP22, LWP23a, LWP23b].

In the current setting, we now suppose that V is symmetric monoidal
closed. With C = V S , there is a subcategory of arities
J = NS ↪→ V S whose objects are J = (nS · I )S∈S with all but
finitely many nS = 0 (S ∈ S).

An NS-theory [LWP23b] is a V -category T equipped with an
identity-on-objects V -functor τ : Nop

S → T satisfying a certain
(“nerve”) condition. A V -monad T on V S is NS-nervous if it
satisfies a certain (“nerve”) condition.
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The connection with V -enriched algebraic theories and
monads

Theorem ([Par23])

Suppose that V is a symmetric monoidal closed topological category over
Set. There is a (semantics-respecting) correspondence between
V -enriched S-sorted equational theories, NS-theories, and NS-nervous
V -monads on V S .
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In conclusion

Classical (Set-enriched) multi-sorted equational theories and their free
algebras have played important roles in mathematics and computer
science. Given a symmetric monoidal category V that is topological
over Set, we have defined a notion of V -enriched multi-sorted
equational theory that recovers the classical notion when V = Set.

Because V is topological over Set, free algebras for V -enriched
multi-sorted equational theories can be explicitly obtained as suitable
“liftings” of free algebras of their underlying classical counterparts.
When V is symmetric monoidal closed, V -enriched multi-sorted
equational theories correspond to V -enriched algebraic theories and
monads for a certain specific subcategory of arities.

Future work: exploring the potential applications of V -enriched
multi-sorted equational theories (especially in computer science and
database theory).
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Thank you!

(Preprint should be on arXiv in the next week or so!)
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